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a b s t r a c t

Serotonin 5-HT2A receptor is widely distributed in the central nervous system and plays an important
role in sensorimotor function, emotion regulation, motivation, executive control, learning and memory.
We investigated its role in rat maternal behavior, a naturalistic behavior encompassing many psycho-
logical functions that the 5-HT2A receptor is involved in. We first showed that activation of 5-HT2A re-
ceptor by TCB-2 (a highly selective 5-HT2A agonist, 1, 2.5 or 5.0 mg/kg) disrupted maternal behavior dose-
dependently, and this effect was reduced by pretreatment with a 5-HT2A receptor antagonist MDL
100907, but exacerbated by pretreatment with a 5-HT2C receptor antagonist SB242084 and a 5-HT2C
receptor agonist MK212, indicating that the maternal disruptive effect of 5-HT2A activation is receptor-
specific and can be modulated by 5-HT2C receptor bidirectionally. We then microinjected TCB-2 into
two brain regions important for the normal expression of maternal behavior: the medial prefrontal
cortex (mPFC) and the medial preoptic area (mPOA) and found that only acute intra-mPFC infusion of
TCB-2 suppressed pup retrieval, whereas intra-mPOA had no effect. Finally, using c-Fos immunohisto-
chemistry, we identified that the ventral bed nucleus of stria terminalis (vBNST), the central amygdala
(CeA), and the dorsal raphe (DR) were additionally involved in the maternal-disruptive effect of TCB-2.
These findings suggest that the 5-HT2A receptor in the mPFC and other maternally related regions is
required for the normal expression of maternal behavior through its intrinsic action or interactions with
other receptors (e.g. 5-HT2C). Functional disruption of this neuroreceptor system might contribute to
postpartum mental disorders (e.g. depression and psychosis) that impair the quality of maternal care.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The 5-HT2A receptor is densely expressed in various cortical
areas (e.g. prefrontal cortex, piriform and enthorinal cortex) and
subcortical areas, such as basal ganglia (e.g. caudate nucleus and
accumbens) and the limbic system (Pompeiano et al., 1994). It plays
an important role in a wide range of psychological functions, from
sensorimotor function, emotion regulation, motivation, learning
and memory to executive control (Zhang and Stackman, 2015).
Dysfunctions of this receptor system have been suggested to
contribute to several major neuropsychiatric disorders, such as
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schizophrenia, major depression, autism and Alzheimer's disease
(Aznar and Hervig Mel, 2016; Fakhoury, 2016). Overall, the 5-HT2A
receptor appears to be an important neuromodulatory system that
has a broad impact on basic brain functions.

Maternal behavior in rats is a naturally expressed and highly
motivated behavior with its onset and maintenance critically
dependent on many psychological functions that the 5-HT2A re-
ceptor is intimately involved in. In addition, the 5-HT2A receptor
system and various sex hormones (e.g. estrogen, prolactin) that are
fundamentally important for maternal behavior show various
reciprocal interactions (Fink et al., 1996; Liang and Pan, 2000). Thus,
it is logic to think that this receptor system should play a role in
maternal behavior. This idea also fits well with the observation that
the 5-HT2A receptor is found in the brain regions important for
olfactory processing (e.g. piriform and enthorinal cortex, endo-
piriform nucleus, and olfactory bulb/anterior olfactory nucleus), an
important function necessary for maternal behavior. Surprisingly,
at this time, there is no direct evidence supporting a role of 5-HT2A
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receptor in the regulation of rat maternal behavior. The only
available evidence is that drugs with a certain antagonist and
agonist action on 5-HT2A receptor, such as clozapine or DOI (2,5-
dimethoxy-4-iodo-amphetamine), respectively, disrupt maternal
behavior upon acute treatment (Li et al., 2004; Zhao and Li, 2009a,
b; 2012). However, because both clozapine and DOI also have an
action on 5-HT2C receptor, and activation of 5-HT2C alone is able to
cause a severe disruption of maternal behavior care (Chen et al.,
2014; Wu et al., 2016), it can be said that the maternal-disruptive
effect of clozapine and DOI is due to their actions on 5-HT2C re-
ceptor alone. Furthermore, recent work shows that selective
blockade of 5-HT2A receptor alone is ineffective to alter maternal
care (Chen et al., 2014), casting a doubt on the involvement of the 5-
HT2A receptor in maternal behavior.

Because activation of 5-HT2A receptor is capable of facilitating
dopamine cell activity and dopamine release (Bortolozzi et al.,
2003), and this action of dopamine is known to mediate rat
maternal behavior, especially maternal motivation (Afonso et al.,
2007; Febo et al., 2010; Li and Fleming, 2003; Numan, 2007), it is
possible that activation of 5-HT2A receptor, instead of blocking it,
may cause alteration of maternal behavior. The present study tested
this idea and examined the neurobiological mechanisms underly-
ing the 5-HT2A receptor effect in maternal behavior. We also
explored the potential interactive effect of 5-HT2A and 5-HT2C re-
ceptors in maternal behavior in light of the findings that both 5-
HT2A and 5-HT2C receptors are expressed throughout the meso-
limbic and corticostriatal circuits (Bubar et al., 2011) and they often
play opposing roles in various brain functions and psychological
processes relevant to rat maternal behavior. Our findings revealed
that the 5-HT2A receptor, especially that expressed in the mPFC, is
required for the normal expression of maternal behavior through
its intrinsic action and/or interactions with other receptors (e.g. 5-
HT2C) or other neurotransmitter systems, such as dopamine. This
work is scientifically significant as it enhances our understanding of
the basic neurochemical basis of maternal behavior. It is also clin-
ically significant, as it implies that dysregulation of frontal 5-HT2A
receptors may contribute to impaired maternal care as observed in
people with postpartum depression who show elevated cortical 5-
HT2A receptor binding (Bhagwagar et al., 2006). Because many of
these patients are treated with selective serotonin reuptake in-
hibitors (SSRIs), and chronic SSRI treatment could induce an up-
regulation of the 5-HT2A receptors (Hamon and Blier, 2013;
Massou et al., 1997), this study also sheds light on the potential
long-term negative impact of SSRI use during lactation on the
quality of maternal care.
2. Materials and methods

2.1. Animals

Naïve pregnant female Sprague-Dawley rats (gestational days 6
upon arrival to the animal facility) were purchased from Charles
River Inc. All rats were housed individually in
48.3 cm � 26.7 cm � 20.3 cm transparent polycarbonate cages
under 12-h light/dark conditions (lights on at 6:30 a.m.), and had
access to standard laboratory rat chowand tapwater ad libitum. The
colony was maintained with a controlled temperature (21 ± 1 �C)
and a relative humidity of 45e60%. Experiments were conducted
during the light cycle. All animal manipulations were reviewed and
approved by the University of Nebraska Institutional Animal Care
and Use Committee, and were carried out in compliance with the
National Institutes of Health Guide for the Care and Use of Labo-
ratory Animals.
2.2. Drugs and choices of dosage

TCB-2 (4-Bromo-3,6-dimethoxybenzocyclobuten-1-yl) methyl-
amine hydrobromide) was used as the main pharmacological tool
to investigate the role of the 5-HT2A receptor in maternal behavior.
It is highly selective on 5-HT2A receptors, with no reported actions
on other receptors (McLean et al., 2006). TCB-2, MK212 [6-Chloro-
2-(l-piperazinyl) pyrazine hydrochloride] and SB242084 [6-Chloro-
2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-
pyridiny]-1H-indole-1-carboxyamide dihydrochloride hydrate]
were obtained from Tocris Bioscience (Ellisville, MO, USA).
MDL100907 [(R)-(þ)-a-(2,3-dimethoxyphenyl)-1-[2-(4-
fluorophenyl)ethyl]-4-pipidinemethanol] was purchased from
Sigma-Aldrich (St. Louis, MO, USA). TCB-2 and MK212 was dis-
solved in 0.9% saline, while MDL100907 was dissolved in a minimal
amount (up to 1%) glacial acetic acid and made up to volume with
0.9% saline. SB242084 was dissolved in 0.9% saline solution con-
taining 8% hydroxypropyl-b-cyclodex-trin and 25 mM citric acid.
All drugs were administrated subcutaneously except in Experiment
4 (an intracranial infusion). Doses of TCB-2, MDL100907, MK212,
and SB242084 were chosen either based on our previous study
(Chen et al., 2014) or several recent reports (Boulougouris et al.,
2008; Burghardt et al., 2007; Fox et al., 2010; Strong et al., 2009).
In Experiment 4, the bilateral microinjection (0.5 ml at 0.5 ml/min)
started 1 min after the insertion of the injector, which remained in
place for an additional 1 min before removal to allow for drug
diffusion.

2.3. Basic procedure of the maternal behavior test

The basic procedurewas identical to what has been described in
our previous studies (Chen et al., 2014; Zhao and Li, 2009b).
Starting 2 or 3 days prior to the first possible expected parturition
date, the subjects weremonitored in themorning and afternoon for
signs of parturition. Once the dam was found with pups in the
morning (that daywas designated as postpartum day 1, PPD 1) or in
the afternoon (PPD 0), two shredded paper towels were provided
for nesting materials. On PPD 2, each litter was culled to 8 pups (4
males and 4 females with the most visible milk bands) and all
subjects were changed to clean observation cages with their litters.

On the maternal behavior test days, pups were first removed
from the dam and the nest was destroyed. Ten seconds later, the
pups were placed back in the cage at the corner diagonal to the
original nest site or dam sleeping corner. Each test was recorded by
video cameras and analyzed manually using a computer with an
event-recording program (JWatcher, http://www.jwatcher.ucla.
edu). The raters were blind to each dam's treatment condition.
The following behaviors were recorded and analyzed: pup retrieval
(a rat picking up a pup in her mouth and carrying it back to the nest
site), hovering over pup (a rat positioning herself over the pups
with legs splayed to accommodate the pups, including hover, high
and low crouching-over posture), pup licking (a rat placing its
tongue on the anogenital area and the rest of a pup's body), nest
building (a rat picking up nest material in her mouth and trans-
porting it back to the nest site or pushing the material with her
forepaws towards the nest site). The first pup retrieval latency was
defined as the time elapsed from the first pup approach to the
retrieval of the first pup into the nest. 600s was assigned to non-
responders who did not approach or retrieve the testing pups. Af-
ter the test, unretrieved pups were returned to the nest site. On PPD
2 or 3, to screen for baseline maternal performance and habituate
dams to the testing procedure, we did a pup retrieval test
(removing pups then return them 10 s later) for 10 min, and at the
end of the 10-min period, unretrieved pups were returned to the
nest site. Only those that retrieved all 8 pups were used in the
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subsequent tests. Rats were typically tested at several time points
before (�30 min) and after the drug administration (e.g. 30 min,
90 min). Frequency and/or duration of various maternal responses
were recorded for 10 min.

2.4. Experiment 1: basic effects of 5-HT2A activation by TCB-2 on
maternal behavior

In this experiment, we tested 8 postpartum rats using a within-
subjects Latin square design to determine whether 5-HT2A receptor
is involved in the regulation of maternal behavior expression and
establish a minimum effective dose of TCB-2. Mother rats were
randomly assigned to receive either vehicle (VEH), or one of the
three doses of TCB-2 (5-HT2A agonist, 1.0, 2.5 or 5.0 mg/kg, sc) on
PPD 4, 6, 8, and 10. Maternal behavior was tested for 10 min at
30min before and 30min,120min, 24 h after the injection. Each rat
was tested across the four treatment conditions, thus it served as its
own control. Various measures of maternal behavior were recorded
and quantified (e.g. frequency or duration).

2.5. Experiment 2: receptor specificity of TCB-2's maternal
disruptive effect

This experiment was aimed to examine the receptor specificity
of 5-HT2A receptor and confirm TCB-2's effects on maternal
behavior in Experiment 1 using a between-subjects design, since
maternal behavior is known to decline with the progress of lacta-
tion. TCB-2 (2.5 mg/kg) was tested together with MDL100907 (a 5-
HT2A antagonist, 1.0, 2.0 mg/kg, sc) or saline. Specifically, on PPD 4,
6, 8, and 10, 32 mother rats (n ¼ 8 per group) were randomly
assigned to receive either a double injection of VEH (saline with 1%
glacial acetic acid)þVEH (saline, n¼ 8), VEH (1% acid saline)þTCB-2
(n ¼ 8), MDL100907e1.0þTCB-2 (n ¼ 8), MDL100907e2.0þTCB-2
(n¼ 8). The first VEH orMDL100907was injected 10min before the
second VEH or TCB-2 injection. Maternal behavior was tested for
10 min at 30 min before, 30 min, 90 min and 150 min after TCB-2
injection.

2.6. Experiment 3: interactions between 5-HT2A receptor and 5-
HT2C receptor on maternal behavior

The 5-HT2A and 5-HT2C receptors often has opposing effects on
behavior (Popova and Amstislavskaya, 2002; Robinson et al., 2008;
Winstanley et al., 2004). In this experiment, we examined how the
maternal disruptive effect of TCB-2 is altered by the blockade or
activation of 5-HT2C receptor in an attempt to elucidate the possible
interaction between these two serotonin receptors on maternal
behavior. TCB-2 (2.5 mg/kg) was tested together with either
SB242084 (a 5-HT2C antagonist, 0.6 and 1.0 mg/kg, sc), or MK212 (a
5-HT2C agonist, 0.5, 1.0 mg/kg, sc). It should be noted that at the
tested doses, SB242084 has no effect on maternal care (unpub-
lished observations), whereas MK212 disrupts maternal behavior
(Chen et al., 2014;Wu et al., 2016). On PPD 4, 6, 8, and 10, 29mother
rats (n ¼ 7e8 per group) were randomly assigned to receive either
SB242084e0.6þTCB-2 (n ¼ 8), SB242084e1.0þTCB-2 (n ¼ 7),
MK212e0.5þTCB-2 (n¼ 7), or MK212e1.0þTCB-2 (n¼ 7), and their
data were compared with those of the VEH þ VEH (n ¼ 8) and
VEH þ TCB-2 (n ¼ 8) groups from Experiment 2. On each test day,
the first VEH or SB242084 was injected at 10 min before the second
VEH or TCB-2 injection, while MK212 was injected together with
TCB-2 based on our previous studies showing that MK212's time
course of action on maternal behavior is similar to that of TCB-2
(around 2 h) (Chen et al., 2014; Wu et al., 2016). Maternal
behavior was tested for 10 min at 30 min before, 30 min, 90 min
and 150 min after TCB-2 injection on PPD 4, 6, 8, and 10.
2.7. Experiment 4: neural basis of TCB-2's effect on maternal
behavior: a microinjection study

In this study, we attempted to identify the brain regions where
TCB-2 acts to disrupt maternal behavior by centrally infusing TCB-2
into the mPOA or mPFC. We chose the mPOA because it is the most
critically important brain region for maternal behavior (Numan,
2007). We chose the mPFC because it is not only involved in
maternal behavior (Afonso et al., 2007; Febo et al., 2010; Zhao and
Li, 2012), but also appears to mediate the behavioral and neuro-
chemical effects of 5-HT2A activation (Feng et al., 2015; Kuroki et al.,
2003). On day 11e13 of gestation, rats were anaesthetized using a
mixture of ketamine HCl (90 mg/kg) and xylazine (4 mg/kg) (ip),
and implanted with bilateral stainless-steel guide cannulas (22
gauge; Plastics One, Inc.) into the mPOA (n ¼ 5) or mPFC (n ¼ 26).
The incisor bar was set at �3.4 mm. For the mPOA cannulation, the
coordinates were set as: AP -0.5 mm, ML ± 0.75 mm, DV -6.5 mm
(Small et al., 2003). For the mPFC, the coordinates were:
AP þ 3.0 mm, ML ± 0.75 mm, DV -2.2 mm (Febo et al., 2010).

In the mPOA experiment, we did a quick screening test on 5
postpartum females. They were tested for 10 min at 10 and 60 min
after the central infusion of VEH, 0.1, 0.4, or 4.0 mg/side/0.5ml/side of
TCB-2 on PPD 4, 6, 8, and 10, respectively. In the mPFC experiment,
two batches of rats were tested. The first batch of 8 rats were tested
identically as those in the mPOA experiment under the same dose
range (VEH, 0.1, 0.4, or 4.0 mg/side/0.5ml/side). Based on the results
from that study, we then used a between-subjects design and
tested another batch of 18 rats randomly assigned to either the VEH
(n ¼ 8) or TCB-2 (n ¼ 10) groups. Rats were tested for 10 min at 30
and 120 min after the central infusion of VEH or TCB-2 4.0 mg/side/
0.5ml/side for 4 days on every other day from PPD 4 to 10. At the end
of behavioral tests, rats were sacrificed and perfused. Their brains
were sectioned and then stained with cresyl violet before viewing
cannula placement as previously reported (Feng et al., 2015). The
location of the injection site was mapped onto a stereotaxic atlas
(Paxinos, 2005) (Fig. 4A).

2.8. Experiment 5: neural basis of TCB-2 effect on maternal
behavior: a c-Fos immunohistochemistry study

To broaden our search of the relevant brain regions involved in
the mediation of TCB-2's maternal disruptive effect, we used c-fos
immunohistochemistry and examined the increased c-fos expres-
sions in acute and repeated TCB-2-treated rats. A total of 46 post-
partum rats were randomly divided into one of six groups: 5-day
VEH (n ¼ 10), 5-day 2.5 mg/kg TCB-2 (n ¼ 9) and 5.0 mg/kg TCB-2
(n¼ 10) groups, as well as 1-day VEH (n¼ 6), 1-day 2.5 mg/kg TCB-
2 (n¼ 6) and 5.0 mg/kg TCB-2 (n¼ 5) groups. For the 5-day groups,
maternal behavior was tested for 10 min once daily from PPD 6 to 9
starting at 30 min after TCB-2 or vehicle injection. For the 1-day
groups, maternal behavior was tested once daily from PPD 6 to 9,
but no injection was done.

On PPD 10, all rats received either TCB-2 or VEH injection. One
hour later, rats were overdosed and perfused as described in our
previous work and their brains were extracted for c-Fos immuno-
reactivity staining (Zhao and Li, 2010, 2012). The number of positive
cells characterized by clearly labeled nuclei was counted unilater-
ally in six serial sections with comparable anatomical levels across
the treatment groups.We focused on themPFC, nucleus accumbens
shell (NAs) and nucleus accumbens core (NAc), dorsolateral stria-
tum (DLSt), ventral lateral septum (LSv), mPOA, ventral tegmental
area (VTA), and dorsa raphe (DR), because 5-HT2A/2C receptor
agonist (DOI) and antagonist (clozapine and olanzapine) are shown
to have effects on these regions in mother rats (Zhao and Li, 2010,
2012). DR was also chosen because it is a major serotonergic
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brain site (Azmitia and Segal, 1978; Liu et al., 2000; Queree et al.,
2009; Steinbusch, 1981). Other brain regions analyzed included
the ventral bed nuclsus of the stria terminalis (vBNST), central
(CeA) and medial amygdala (MeA), dentate gyrus (DG), and peri-
aqueductal gray (PAG) (Paxinos, 2005).

2.9. Statistical analysis

Statistical analyses were performed using SPSS 20 software
(SPSS Inc., Chicago, IL, USA). Maternal behavior data from each test
day (PPD 4, 6, 8 and 10) were analyzed separately using a factorial
repeated measures analysis of variance (ANOVA), with group as the
between-subjects factor and test time point as the within-subjects
factor. Group differences at different test time points were further
investigated using simple main effect tests (one-way ANOVA) fol-
lowed by LSD post hoc tests for multiple comparisons when
necessary. Data from the experiments with a Latin square or
within-subjects designwere analyzed using the Paired-Sample test.
In Experiment 5, repeated measures ANOVAs were conducted to
examine the effects of repeated TCB-2 administration from PPD 6 to
9. c-Fos data were analyzed using multivariate analysis of variance
in a 2 � 2 design (drug and treatment condition as between-
subjects factors, brain regions as within-subjects factors), and sig-
nificant effects were followed up using the LSD post hoc test
comparing the within-treatment condition across drug, and
within-drug condition across treatment. Because the latency was
not normally distributed, those data were analyzed using
nonparametric Kruskal-Wallis test, and Mann-Whitney U test if the
overall significant effects were determined. All data are presented
asmean± SEM. Differences were considered statistically significant
if p< 0.05. In Experiment 3,1 rat in the SB242084e1.0þTCB-2 group
died unexpectedly before PPD 10, thus its data on that day were not
included. Except for the data from Experiment 1, we only presented
pup retrieval as a representation of thematernal disruptive effect of
TCB-2 for simplicity reason. All other data (i.e. hovering over pup,
licking and nest building) from Experiments 2, 3 and 4 are included
in the supplementary materials.

3. Results

3.1. Experiment 1: basic effects of 5-HT2A activation by TCB-2 on
maternal behavior

Acute TCB-2 treatment dose-dependently disrupted various
maternal responses. In comparison to the VEH-treated rats, rats
under the influence of TCB-2 retrieved fewer pups into the nest at
the 30 min (p ¼ 0.047, 0.006, and 0.011 for TCB-2 1.0, 2.5, and
5.0 mg/kg) and 120min time points (p¼ 0.033, 0.003, and 0.000 for
TCB-2 1.0, 2.5, and 5.0 mg/kg) (Fig. 1A). This disruption disappeared
at the 24 h time point (p > 0.17). In addition, TCB-2 dose-depen-
dently prolonged the 1st pup retrieval latency, decreased amount of
time spent on hovering over pup and nest building at the 30 min
and 120 min points (all p < 0.05) (Fig. 1B, C and 1E). It also sup-
pressed pup licking at the 120 min point (p ¼ 0.034 and 0.050, for
TCB-2 1.0 and 5.0 mg/kg respectively).

3.2. Experiment 2: receptor specificity of TCB-2's disruptive effect
on maternal behavior

Once again, acute treatment of TCB-2 severely disrupted various
components of maternal behavior on PPD 4. This confirmed the
TCB-2's disruptive effect on maternal behaviors in Experiment 1
using the within-subjects design. As expected, pretreatment of the
5-HT2A antagonist MDL100907 dose-dependently attenuated the
TCB-2-inducedmaternal disruption. Fig. 2 shows the results of TCB-
2 treatment alone, and MDL100907 (1.0 or 2.0 mg/kg) þ TCB-2
treatment on pup retrieval at four test time points on PPD 4 in
comparison to the vehicle control (data from PPD 6, 8 10 are similar
to those from PPD 4. For simplicity, they are not presented). Both
doses of MDL100907 were effective in reversing the effect of TCB-2
and 1.0 mg/kg dosage appears to be even more effective. Repeated
measures ANOVA revealed a main effect of group [F (3, 28) ¼ 6.557,
p ¼ 0.002], a main effect of test time [F (3, 84) ¼ 17.014, p ¼ 0.000],
and a significant group � test time interaction [F (9, 84) ¼ 2.842,
p ¼ 0.006]. Post hoc LSD tests indicated that the VEH þ TCB-2 and
MDL100907e2.0þTCB-2 groups retrieved fewer pups than the
VEHþ VEH group (p < 0.001 and p¼ 0.004, respectively), while the
MDL100907e1.0þTCB-2 group actually retrieved more pups than
the VEH þ TCB-2 group (p ¼ 0.029).

3.3. Experiment 3: interactions between 5-HT2A receptor and 5-
HT2C receptor on maternal behavior

TCB-2-induced pup retrieval disruption was worsened by
MK212 and SB242084 treatment, which activates and blocks 5-
HT2C receptor, respectively. Fig. 3A shows the pretreatment effect
of SB242084 (0.6 and 1.0 mg/kg) on PPD 4. Repeated measures
ANOVA revealed a main effect of group [F (3, 27) ¼ 45.633,
p ¼ 0.000], a main effect of test time [F (3, 81) ¼ 100.785,
p ¼ 0.000], and a significant group � test time interaction [F (9,
81) ¼ 12.813, p ¼ 0.000]. Post hoc LSD tests indicated that the two
SB242084þTCB-2 groups retrieved fewer pups than the
VEH þ TCB-2 group (p ¼ 0.026 and 0.009, respectively).

Fig. 3B shows the results of pretreatment with MK212 (0.5,
1.0 mg/kg) treatment on pup retrieval at four test time points on
PPD 4. Repeated measures ANOVA revealed a main effect of group
[F (3, 26) ¼ 37.187, p ¼ 0.000], a main effect of test time [F (3,
78) ¼ 52.172, p ¼ 0.000], and a significant group � test time
interaction [F (9, 78) ¼ 6.457, p ¼ 0.000]. Post hoc LSD tests indi-
cated that the VEH þ TCB-2, MK212e0.5þTCB-2, and
MK212e1.0þTCB-2 groups retrieved fewer pups than the
VEH þ VEH group (all p < 0.001). More importantly, the
MK212e1.0þTCB-2 group retrieved fewer pups than the
VEH þ TCB-2 group (p ¼ 0.005).

3.4. Experiment 4: neural basis of TCB-2's effect on maternal
behavior: a microinjection study

To examine the neuroanatomical basis of action of TCB-2 in
maternal behavior, we microinjected TCB-2 at 0.1, 0.4, or 4 mg/side
into the mPOA or mPFC. All the injection sites were verified in the
intended targeted areas. Results showed that intra-mPOA infusion
of TCB-2 had no effect on pup retrieval (all p > 0.241) (Fig. 4B).
However, intra-mPFC infusion of TCB-2 at 4 mg/side, but not at 0.1 or
0.4 mg/side, decreased the number of pups retrieved at 60 min time
point (p ¼ 0.008; Fig. 4C). This result from a within-subjects study
was confirmed in the subsequent study with a between-subjects
design. TCB-2 at 4 mg/side infused into the mPFC transiently sup-
pressed pup retrieval at 30 min (p ¼ 0.006) but not 120 min
(p ¼ 0.144) time points on PPD 4 (Fig. 4D). Such a disruption was
also observed on PPD 6, 8, and 10, but the magnitude was reduced
so that the group difference was found to be not significant (all
p > 0.051), indicating a tolerance-like effect with TCB-2-induced
activation of prefrontal 5-HT2A receptor.

3.5. Experiment 5: neural basis of TCB-2 effect on maternal
behavior: a c-Fos immunohistochemistry study

Behaviorally, acute TCB-2 treatment on PPD 6 dose-dependently
reduced the number of pups retrieved (p < 0.05). With repeated



Fig. 1. Effects of systemic TCB-2 injection on maternal behavior. Mother rats were randomly assigned to receive an injection of vehicle (VEH), or TCB-2 (1.0, 2.5 or 5.0 mg/kg, sc) on
PPD 4, 6, 8 and 10 when maternal behavior was observed for 10 min at 4 time points: 30 min before, 30 min, 120 min and 24 h after the injection. Data are presented and expressed
as mean þ SEM. A, number of pups retrieved; B, latency of first pup retrieval; C, duration of hovering over pups; D, duration of pup licking; E, duration of nest building. *p < 0.05,
**p < 0.01, ***p < 0.001, significantly different between the different drug administrations (VEH vs. TCB-2).
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administration, TCB-2 gradually lost its disruption in a dose-
dependent fashion (VEH vs. TCB-2 2.5, p > 0.05 on PP 7, 8, and 9;
VEH vs. TCB-2 5.0, p ¼ 0.000 on PP 7 and 8; p > 0.05 on PPD 9)
(Fig. 5A). Repeated measures ANOVA revealed a significant main
effect of drug treatment [F (2, 26) ¼ 18.629, p ¼ 0.000], test day [F
(3, 78)¼ 11.152, p¼ 0.000] and interaction between the two factors
[F (6, 78) ¼ 3.076, p ¼ 0.009].

With the acute treatment, TCB-2 significantly altered c-Fos
immunoreactivity in the vBNST [F (2, 14) ¼ 5.463, p¼ 0.018], CeA [F
(2,14)¼ 6.634, p¼ 0.009] and DR [F (2, 14)¼ 4.902, p¼ 0.024], with
no significant change in other examined regions (all p > 0.05).
Specifically, in comparison to the VEH treatment, TCB-2 at 5.0 mg/
kg significantly increased c-Fos immunoreactivity in the vBNST,
CeA and DR (all p < 0.05), whereas TCB-2 at 2.5 mg/kg increased c-
Fos immunoreactivity only in the vBNST and DR (all p < 0.05),
showing a dose-dependent effect in the CeA (Fig. 5B and D). The
two TCB-2 groups did not differ from each other. With the repeated
TCB-2 treatment, TCB-2 failed to alter c-Fos immunoreactivity in
the regions where acute TCB-2 had an effect, including the vBNST [F
(2, 18) ¼ 0.093, p > 0.05], CeA [F (2, 18) ¼ 2.005, p > 0.05] and DR [F
(2, 18) ¼ 0.625, p > 0.05], and also failed to show c-Fos immuno-
reactivity in other examined areas (Fig. 5C). The lack of change in c-
Fos immunoreactivity matches well with the lack of behavioral
effects of repeated TCB-2 treatment, indicating that the c-Fos signal
is valid in revealing brain regions targeted by TCB-2.
4. Discussion

This is the first study to provide direct evidence that 5-HT2A is
critically important for the regulation of maternal behavior in rats.
Behaviorally, activation of the 5-HT2A receptor by TCB-2 dose-
dependently disrupted various maternal responses, especially pup
retrieval and hovering over pups. Neurochemically, we showed that
the effect of TCB-2 was receptor-specific, as only pretreatment of a



Fig. 2. Effects of MDL100907 (1.0, 2.0 mg/kg) pretreatment on TCB-2 (2.5 mg/kg)’s
disruptive effect on pup retrieval. On PPD 4, the first VEH and MDL100907 was injected
10 min before the second VEH and TCB-2 injection. Pup retrieval was tested for
10 min at 30 min before (baseline), 30 min, 90 min and 150 min after TCB-2 injection.
Number of pups retrieved in each test is expressed as mean þ SEM. *p < 0.05,
**p < 0.01, ***p < 0.001 significantly different between the VEH þ VEH and þTCB-2
groups. #p < 0.05 significantly different between MDL100907-(1.0 or 2.0)þTCB-2 and
VEH þ TCB-2 groups.

Fig. 3. Effects of SB242084 (0.6, 1.0 mg/kg) (A) and MK212 (0.5, 1.0 mg/kg) (B) pretreatment on TCB-2 (2.5 mg/kg)’s disruptive effect on pup retrieval. SB242084 (0.6, 1.0 mg/kg) was
injected 10 min before the second VEH and TCB-2 injection, while MK212 (0.5, 1.0 mg/kg) was injected together with TCB-2. Pup retrieval was tested for 10 min at 30 min before
(baseline), 30 min, 90 min and 150 min after TCB-2 injection. Number of pups retrieved in each test is expressed as mean þ SEM. *p < 0.05, **p < 0.01, ***p < 0.001 significantly
different between the VEH þ VEH and TCB-2 groups. #p < 0.05, ##p < 0.01 significantly different between SB242084-(0.6 or 1.0)þTCB-2 or MK212-(0.5, or 1.0) and VEH þ TCB-2
groups.
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selective 5-HT2A receptor antagonist MDL100907 reduced the
maternal disruptive effect of TCB-2, while pretreatment with 5-
HT2C receptor drugs, SB242084 (a 5-HT2C antagonist) or MK212 (a
5-HT2C agonist), exacerbated it. This result also suggests that the
maternal disruptive effect of 5-HT2A activation is modulated by 5-
HT2C receptor bidirectionally. Central action of TCB-2 points out
that the 5-HT2A receptors, especially those in the mPFC, vBNST, CeA
and DR, are likely involved in the mediation of maternal behavior.
The 5-HT2A receptors in the mPOA did not appear to be involved in
the effect of TCB-2, as results from both the microinjection and c-
fos studies did not find any effect when the MPOAwasmanipulated
or examined. However, this conclusion needs to be further exam-
ined because of the small size.

Maternal behavior is a cluster of observable behavioral re-
sponses (e.g. pup retrieval, pup licking, nursing and nest building)
organized seamlessly to ensure the survival of the young. Various
psychological processes such as sensorimotor function, attention,
emotional processing, incentive motivation, and memory, are
involved in the support of these behavioral responses. In light of the
current findings, one obvious question is: how does TCB-2 affect
basic psychological processes to cause maternal disruption? Our
recent work suggests that the TCB-2's induced disruption is not
likely caused by the drug's effect on mothers' motivational and
emotional processing of the incentive salience of pups, as dams
treated with TCB-2 actually increased their preference to pups over
a male conspecific in a pup preference test (Wu et al., under
review). This enhanced emotional and motivational responses to-
wards pups might be due to the stimulating effect of TCB-2 on
dopamine neurotransmission in the mesocortical and mesolimbic
dopamine systems (Di Giovanni et al., 2000; Di Matteo et al., 2002).
TCB-2 also does not appear to cause a disruption of maternal
behavior by simply increasing motor activity and stereotypical
behaviors. However, previous work suggests that just increasing
locomotor behavior and stereotypies in rats does not significantly
alter their ability to bematernal (Johns et al., 1998). Also in a related
study, we did not find any significant change in motor activity in
dams treated with TCB-2 (Wu et al., under review). One possible
mechanism may involve the action of TCB-2 on behavioral orga-
nization, as stimulation of 5-HT2A receptor is shown to increase
impulsive response while suppression of 5-HT2A receptor decrease
it (Winstanley et al., 2004). Similar to DOI, a selective 5-HT2A/2C
agonist which we have shown to exert a disruptive effect on rat
maternal behavior via its action on 5-HT2A receptor (Zhao and Li,
2010), TCB-2, like other 5-HT2A agonists (Gonzalez-Maeso et al.,
2007; Krebs-Thomson et al., 1998), is a hallucinogen (e.g.
inducing head twitches) (Fox et al., 2010) that could disrupt the
organization of behavioral response patterns (e.g. increased frag-
mentation and premature, or ‘impulsive’ responding) necessary for
the normal expression of maternal responses. In other words, TCB-
2 might have disrupted the behavioral organization aspect of the
executive function. In our tests, we did observe that rats treated
with TCB-2 often exhibited interrupted normal sequence of pup-
directed responses (e.g. pup retrieval and pup licking, fragmenta-
tion), indicating a disruption of the organization of microregulatory
maternal responses. This idea is also consistent with our later
finding that the mPFC is one critical site for the action of TCB-2
(Fig. 5), and the mPFC is known for its role in the executive con-
trol (Chudasama, 2011). Future work needs to employ other highly



Fig. 4. (A) Histological representations of microinjection sites and schematic diagrams showing the location of the injector tips in the mPOA and mPFC. Data are reconstructed from
Paxinos and Watson (Paxinos, 2005). Numbers to the left of the sections indicate anteroposterior distance from bregma in millimeters. The arrow in the histological representation
section and black dot in the schematic diagrams denotes the infusion placement. Effects of TCB-2 microinfused into the medial preoptic area (mPOA, B), or medial prefrontal cortex
(mPFC, C and D) on pup retrieval throughout the four test days (PPD 4, 6, 8 and 10). Number of pups retrieved in each test is expressed as mean þ SEM. *p < 0.05 significantly
different between the VEH and TCB-2 groups.
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selective 5-HT2A receptor agonists, coupled with detailed behav-
ioral analysis of specific executive functions to further test this
hypothesis.

Our previous work fails to show any maternal effect with
blockade of 5-HT2A receptor, as acute and repeated treatment of
MDL100907 does not alter maternal behavior at the behaviorally
active doses (Chen et al., 2014). In the present study, MDL100907
pretreatment attenuated the maternal disruptive effect of TCB-2,
confirming that the mechanism of action of TCB-2 is through
stimulation of 5-HT2A receptor. A more interesting and unexpected
finding is that both 5-HT2C agonist and antagonist potentiated the
maternal disruptive effect of TCB-2. Although the 5-HT2A and the 5-
HT2C receptors are closely related members of the G-protein-
coupled receptors that share the highest degree of sequence ho-
mology (about 50% overall sequence identity) and cellular signaling
pathways (Becamel et al., 2004), they often play opposing roles in
various brain functions and psychological processes. Overall evi-
dence seems to suggest that activation of 5-HT2A receptors has a
similar function to blockade of 5-HT2C receptors, whereas activa-
tion of 5-HT2C receptors is functionally equivalent to blockade of 5-
HT2A receptors. These opposing effects between 5-HT2A and 5-HT2C
receptors are found in the modulation of dopamine release and cell
firing (Di Giovanni et al., 2002; Di Matteo et al., 2002; Ichikawa
et al., 2001; Millan et al., 1998), in behavioral inhibition and
impulsivity (Robinson et al., 2008;Winstanley et al., 2004), reversal
learning (Boulougouris et al., 2008), head-twitch response (Vickers
et al., 2001), sexual behavior (Popova and Amstislavskaya, 2002), as
well as in drug-motivated behaviors (Filip et al., 2004; McMahon
et al., 2001). Based on these observations, we originally expected
to see the 5-HT2C antagonist SB240084 to enhance while the 5-
HT2C agonist MK212 to reverse the maternal disruptive effect of
TCB-2. Indeed, the behavioral enhancement effect of SB240084 was
confirmed. SB240084 may do so to further increase TCB-2-induced
dopamine release in the mPFC and NA and cell firing in the ventral
tegmental area, causing disruption of behavioral organization
(fragmentation) (Di Giovanni et al., 2002; Di Matteo et al., 2002;
Ichikawa et al., 2001; Millan et al., 1998). In contrast, MK212, as a
5-HT2C agonist, was supposed to counteract the TCB-2-induced
increase in dopamine release (Di Giovanni et al., 2000; Di Matteo
et al., 2002) to reduce the maternal disruptive effect of TCB-2.
The lack of such an effect is important, as it indicates that TCB-2
could disrupt maternal behavior through other mechanisms, such
as by influencing the glutamatergic function in the mPFC, in addi-
tion to its known impacts on the VTA dopaminergic cells. Our
microinjection work showing that intra-mPFC injection of TCB-2
suppressed pup retrieval, is consistent with this idea. This idea is
also supported by the observation that the mPFC glutamatergic
neurons do express 5-HT2A (Nocjar et al., 2015); lesions of themPFC
can cause pup retrieval deficits (Afonso et al., 2007); and inacti-
vation or inhibition of neuronal activity in the mPFC disrupt
maternal behavior (Febo et al., 2010).

The direct interaction between the 5-HT2A and 5-HT2C in the
mPFC has been reported in motor impulsivity (Anastasio et al.,
2015). Existing evidence suggests that the mPFC glutamatergic
neurons predominantly express 5-HT2A, whereas the mPFC
GABAergic interneurons predominantly express 5-HT2C (Nocjar
et al., 2015). Therefore, TCB-2 could stimulate the 5-HT2A re-
ceptors on the glutamatergic neurons to disrupt maternal behavior,
while MK212 could stimulate the 5-HT2C receptors on the
GABAergic interneurons to cause a disinhibition of mPFC gluta-
matergic neurons, leading to a further exacerbation of maternal
disruption. This is an intriguing idea and worth further
investigation.

Our previous c-Fos studies show that the 5-HT2A/2C agonist DOI
and antagonists clozapine and olanzapine, though not selective to
5-HT2C receptors, increased c-Fos expression in themPFC (Zhao and
Li, 2010, 2012). In the present study, although we did observe an
increase in c-Fos expression in the mPFC by acute TCB-2, the effect
did not reach a statistically significant level. The c-Fos results reveal
several other brain sites where TCB-2 might have an action,
including the vBNST, CeA and DR, all of which has been implicated
in the regulation of certain aspect of maternal behavior (Barofsky



Fig. 5. (A) Effects of repeated TCB-2 administration on pup retrieval. Maternal behavior was tested for 10 min once daily from PP 6 to 9, starting at 30 min after the injection.
Number of pups retrieved is expressed as mean þ SEM. *p < 0.05, **p < 0.01, significantly different between the VEH and TCB-2. #p < 0.05, ##p < 0.01 significantly different between
the two TCB-2 groups. Effects of acute (B) and repeated TCB-2 administration (C) on c-Fos immunoreactivity. On PP 10, 1 h after the drug injection, all rats were overdosed and
perfused and their brains were extracted for c-Fos immunoreactivity staining. Number of c-Fos positive cells is expressed as mean þ SEM. *p < 0.05, **p < 0.01, significantly different
between the VEH and TCB-2. vBNST, the ventral bed nucleus of the stria terminalis; CeA, central amygdala; DR, dorsal raphe. (D), Brain atlas diagrams depict the region viewed in
the representative images of these brain regions, and c-Fos staining photomicrographs in these regions. Distance from Bregma in the rostrocaudal planes is indicated. (1e3), acute
VEH; (4e6), acute TCB-2, 2.5 mg/kg; (7e9), acute TCB-2 5.0 mg/kg. Scale bar ¼ 100 mm.
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et al., 1983; Bosch et al., 2010; Numan and Numan, 1995). The
serotonergic neurons in the DR project to the VTA and NAc, where
both 5-HT2A and 5-HT2C receptors have been found. Thus, the DR
may regulate maternal motivation toward the young (Bridges,
2015). The CeA appears to be a crucial component for normal
activation of maternal aggression circuitry and was shown to
mediate the suppression of maternal care (Dulac et al., 2014). It has
been shown that maternal aggression was increased after micro-
injection of the 5-HT2A/2C receptor agonist a-Methyl-5-
hydroxytryptamine maleate into the amygdala (de Almeida et al.,
2006). In addition, lesion of vBNST disrupts maternal behavior,
especially pup retrieval (Numan and Numan, 1996), and maternal
expression is associated with increased c-Fos expression and
increased binding to arginine vasopressin V1a and oxytocin re-
ceptors in the BNST (Bosch et al., 2010; Numan and Numan, 1995).

The present work has implications for our thinking about the
effects of antidepressant (e.g. SSRIs) use on maternal care in
depressed mothers which consist of approximately 10e20% of all
mothers (Gjerdingen and Yawn, 2007; Susser et al., 2016), andmore
than 40% of depressedmothers are prescribedwith antidepressants
(Lind et al., 2017). On the one hand, SSRI treatment reduces
depressive symptoms and improve certain functions needed for
adequate maternal care, such as the overall functioning and
maternal role functioning (e.g. gratification in the maternal role)
(Logsdon et al., 2009, 2011). Thus, SSRI use is beneficial for
improving maternal care. On the other hand, chronic SSRI treat-
ment is known to induce an up-regulation of the 5-HT2A receptors
in the frontal cortex (Hamon and Blier, 2013; Massou et al., 1997).
As our findings indicate that enhanced frontal 5-HT2A receptors
might be detrimental to maternal behavior, chronic SSRI treatment
itself might cause a negative impact on the quality of maternal care.
Animal research using postpartum depression models are impor-
tant in untangling the effects of depression and SSRI treatment on
maternal behavior.

Taken together, the 5-HT2A receptor plays an important role in
the modulation of maternal behavior in rats. We suggest three
neural systems where 5-HT2A receptors may achieve this effect.
First, the 5-HT2A receptors in the VTA and NAc may modulate the
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neuronal activity of dopamine neurons and dopamine release to
affect incentive aspects of maternal care (Li and Fleming, 2003;
Numan, 2007). Second, the 5-HT2A receptors in the mPFC could
modulate the glutamatergic and GABAergic neurotransmission and
regulate impulsivity and motivation. Finally, the 5-HT2A receptors
in the vBNST, CeA and DR may interact with other subcortical
structures (e.g. medial preoptic area) to alter maternal behavior.
Clinically, our finding that the 5-HT2A receptor is critically impor-
tant for maternal behavior in rats may have revealed that one
possible cause of postpartummental disorders (e.g. depression and
psychosis) is the functional disruption of this receptor system
(Guiard and Di Giovanni, 2015; Messa et al., 2003). This idea is
supported by the observations that one mechanism of major
depression and the antidepressant action of selective serotonin
reuptake inhibitors (SSRIs) are mediated by the 5-HT2A receptors
(Hamon and Blier, 2013). Future research needs to be conducted to
elucidate the exact central mechanisms of 5-HT2A receptor in
maternal behavior. This research will shed light on the possible
functional dysregulation of the 5-HT2A receptor in postpartum
mental disorders. Such knowledge may help inform the develop-
ment of effective interventions to promote and facilitate maternal
care.
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